

### Hot Pressed NdFeB Rings



Hot Pressed magnets are radially oriented NdFeB rings who's orientation is obtained by mechanical pressing of the Rare Earth powers through a process called Backward Extrusion





### Hot Press Manufacturing Process



### **Microstructure Alignment**



Radially aligned grains are formed by anisotropic growth and grain rotation during the hot extrusion pressing process

# **Cutting and Grinding**



### **Dimensions and Tolerances**

| Dimensions (mm)               | min | max |
|-------------------------------|-----|-----|
| Inner diameter/Outer diameter | 0.7 | 0.9 |
| Height                        | 0.5 | 50  |
| Diameter                      | 10  | 50  |
| Optimum Diameter              | 20  | 40  |

| Tolerances(mm)   | OD    | ID    | Н     | concentricity | roundness |
|------------------|-------|-------|-------|---------------|-----------|
| Machined magnets | ±0.03 | ±0.03 | ±0.1  | 0.03          | 0.03      |
| Coated magnets   | ±0.04 | ±0.04 | ±0.05 | 0.05          | 0.03      |

### **Properties of Ring Magnets**



Hot Press techniques can be used to produce high-performance rings with small diameters

### **Magnetic Properties of Ring Magnets**



# **Physical Properties of Ring Magnets**

|      | Hot Pressed                       |        |        |                        |        | Sintered |       |                                   |        |        |        |        |        |
|------|-----------------------------------|--------|--------|------------------------|--------|----------|-------|-----------------------------------|--------|--------|--------|--------|--------|
|      | Value                             | #1     | #2     | #3                     | #4     | #5       |       | Value                             | #1     | #2     | #3     | #4     | #5     |
|      | Visual Inspection                 | OK     | OK     | OK                     | OK     | OK       |       | Visual Inspection                 | OK     | OK     | OK     | OK     | OK     |
| ⊢    | OD (mm)                           | 26.65  | 626.66 | 26.66                  | 26.66  | 26.65    |       | OD (mm)                           | 26.65  | 26.64  | 26.64  | 26.65  | 26.65  |
| AS.  | ID (mm)                           | 22.03  | 22.04  | 22.05                  | 22.04  | 22.03    | AS.   | ID (mm)                           | 22.02  | 22.01  | 22.02  | 22.03  | 22.02  |
| Τ    | Thickness (mm)                    | 12.16  | 12.18  | 12.18                  | 12.06  | 12.14    | Τ     | Thickness (mm)                    | 12.05  | 12.09  | 12.09  | 12.09  | 12.1   |
| fore | Volume (cm <sup>3</sup> )         | 2.15   | 2.15   | 2.15                   | 2.13   | 2.14     | fore  | -                                 | -      | -      | -      | -      | -      |
| Be   | Surface (cm <sup>2</sup> )        | 22.13  | 22.17  | 22.17                  | 21.99  | 22.1     | Be    | Surface (cm <sup>2</sup> )        | 21.964 | 22.016 | 22.013 | 22.022 | 22.041 |
|      | Mass (g)                          | 16.314 | 16.193 | 16.254                 | 16.241 | 16.361   |       | Mass (g)                          | 15.837 | 15.832 | 16.127 | 16.073 | 16.099 |
|      | Density (g/cm <sup>3</sup> )      | 7.6    | 7.52   | 7.57                   | 7.62   | 7.63     |       | Density (g/cm <sup>3</sup> )      | 7.43   | 7.4    | 7.55   | 7.53   | 7.52   |
|      |                                   |        |        |                        |        |          |       |                                   |        |        |        |        |        |
| ST   | Visual Inspection                 | OK     | OK     | OK                     | OK     | OK       | Ц     | Visual Inspection                 | OK     | OK     | OK     | OK     | OK     |
| HA!  | Mass (g)                          | 16.307 | 16.19  | 16.252 16.238 16.358 ⊈ | ¥      | Mass (g) | 14.39 | 15.534                            | 14.41  | 16.065 | 16.055 |        |        |
| er   | Weight Loss (%)                   | 0.04   | 0.02   | 0.01                   | 0.02   | 0.01     | er    | Weight Loss (%)                   | 9.14   | 1.88   | 10.65  | 0.05   | 0.27   |
| Aftı | Weight Loss (mg/cm <sup>2</sup> ) | 0.29   | 0.14   | 0.09                   | 0.15   | 0.1      | Aft   | Weight Loss (mg/cm <sup>2</sup> ) | 65.893 | 13.499 | 77.998 | 0.3663 | 1.9782 |

Hot Press parts have superior corrosion resistance to sintered magnets

### Comparison of Radially Oriented Sintered to Hot Pressed Magnets

| Item                                         | Sintered ring             | Hot-pressed ring          |  |  |  |  |
|----------------------------------------------|---------------------------|---------------------------|--|--|--|--|
| Surface magnetic flux waveform               | Rectangular wave          | Rectangular wave          |  |  |  |  |
| Number of poles                              | Variable by magnetization | Variable by magnetization |  |  |  |  |
| Magnetized position                          | Variable by magnetization | Variable by magnetization |  |  |  |  |
| Skew magnetization                           | Yes                       | Yes                       |  |  |  |  |
| Recommended inside-to outside diameter ratio | ~0.8                      | ~0.8                      |  |  |  |  |
| Recommended length (mm)                      | 1~50                      | 1~50                      |  |  |  |  |
| Grades                                       | N45, 45H, 42SH, 35UH      | N48, 48H, 45SH, 38UH      |  |  |  |  |
| Recommended OD (mm)                          | D20~D70                   | D8~D50                    |  |  |  |  |
| Corrosion resistance                         | poor                      | good                      |  |  |  |  |

# Hot Pressed Magnetic Properties

| Grade | Ві        |           | Н         | cb        | ł      | Hcj   | (BH)max            |       |
|-------|-----------|-----------|-----------|-----------|--------|-------|--------------------|-------|
|       | Т         | (kGs)     | (kA/m)    | (kOe)     | (kA/m) | (kOe) | kJ/cm <sup>3</sup> | MGOe  |
| 50M   | 1.4~1.45  | 14~14.5   | ≥1043     | ≥13.1     | ≥1114  | ≥14   | 374~406            | 47~51 |
| 45M   | 1.33~1.37 | 13.3~13.7 | 954~1058  | 12.0~13.1 | ≥1273  | ≥16   | 318~366            | 40~46 |
| 42M   | 1.29~1.32 | 12.9~13.2 | 939~1034  | 11.8~13.0 | ≥1273  | ≥16   | 302~342            | 38~43 |
| 48H   | 1.35~1.4  | 13.5~14.0 | 1042~1114 | 13.1~13.6 | ≥1432  | ≥18   | 342~366            | 43~46 |
| 45H   | 1.32~1.35 | 13.2~1.35 | 954~1042  | 12.5~13.1 | ≥1432  | ≥18   | 318~342            | 40~43 |
| 42H   | 1.29~1.32 | 12.9~13.2 | 931~1010  | 12.2~13.1 | ≥1432  | ≥18   | 286~326            | 36~41 |
| 40H   | 1.26~1.29 | 12.6~12.9 | 931~1010  | 11.7~12.7 | ≥1432  | ≥18   | 286~318            | 36~40 |
| 45SH  | 13.2~1.35 | 12.9~13.3 | 954~1042  | 12.5~13.1 | ≥1592  | ≥20   | 318~342            | 41~44 |
| 42SH  | 1.29~1.32 | 12.9~13.2 | 962~1042  | 12.2~13.1 | ≥1592  | ≥20   | 302~326            | 38~41 |
| 40SH  | 1.26~1.29 | 12.6~12.9 | 939~1010  | 11.8~12.7 | ≥1592  | ≥20   | 286~318            | 36~40 |
| 38SH  | 1.22~1.26 | 12.2~12.6 | 923~986   | 11.6~12.4 | ≥1592  | ≥20   | 278~310            | 35~39 |
| 35SH  | 1.18~1.23 | 11.8~12.3 | 891~962   | 11.2~12.1 | ≥1592  | ≥20   | 246~286            | 31~36 |
| 38UH  | 1.22~1.26 | 12.2~12.6 | 907~986   | 11.4~12.4 | ≥1989  | ≥25   | 278~318            | 35~40 |
| 35UH  | 1.18~1.23 | 11.8~12.3 | 891~962   | 11.2~12.1 | ≥1989  | ≥25   | 246~286            | 31~36 |

### **Orientation Properties**



Higher deformation ratio leads to a higher alignment degree. The deformation ratio can determine the remanence of hot-deformed ring.

### **Temperature & Physical Properties**

|                                  | Unit                    | Data         |  |  |
|----------------------------------|-------------------------|--------------|--|--|
| Temp. Coefficient of Br $\alpha$ | %/°C                    | -0.10        |  |  |
| Temp. Coefficient of Hci         | %/°C                    | -0.50        |  |  |
| Recoil Permeability              |                         | 1.05         |  |  |
| Magnetizing Force                | Т                       | 2.5          |  |  |
| Density                          |                         | 7.6~7.7      |  |  |
| Curie Temperature                | °C                      | 360          |  |  |
| Specific Heat                    | J/Kg°C                  | 550          |  |  |
| Thermal Conductivity             | W/m°C                   | 4.80         |  |  |
| Thermal Expansion Coefficient    |                         | radially 1~2 |  |  |
| (20~200°C)                       | × 10-6/°C               | axial -1~0   |  |  |
| Electrical Resistivity           | $	imes$ 10-8 $\Omega$ m | 135          |  |  |
| Ring Crushing Strength           | MPa                     | 150          |  |  |
| Young's Modulus                  | MPa                     | 152000       |  |  |
| Vickers Hardness                 |                         | 750          |  |  |

# **Comparison of Mechanical Properties**

|                  | Fracture toughness<br>(MPa·m-1/2) | Bending strength<br>(MPa) |
|------------------|-----------------------------------|---------------------------|
| Sintered ring    | 4~5                               | 150~200                   |
| hot-pressed ring | 6~7                               | ~400                      |







Grains in hot-deformed ring



Grains in sintered ring

# Thermal Expansion Coefficient (20~200°C)

| Rotor Yoke  | 12x10 <sup>-6</sup>   |
|-------------|-----------------------|
| Adhesive    | 50~100x⁻ <sup>6</sup> |
| Radial Ring | 1~2x10⁻ <sup>6</sup>  |



# **Magnetic Properties Testing**

#### B-H Curve 1 piece/lot

- 1. A few rectangular specimens are cut from a ring magnet.
- 2. Fully magnetized by pulse field.
- 3. Measure by B-H tracer.

### Magnetic Flux 2~20 pieces/lot

- 1. Machined ring magnets are magnetized in a multipole magnetizing fixture.
- 2. Measured flux in the fixture by a flux meter.

### Surface Flux Density 2~20 pieces/lot

- 1. Machined ring magnets are magnetized in a multi-pole magnetizing fixture.
- 2. Measured by gauss meter.











# Plating & Coatings

- Epoxy (Spray or Dip Process)
- Ni, Ni-Cu-Ni, NiCuNi+Cr
- Zinc
- Passivation
- Everlube
- Teflon
- Aluminum (Vapor Deposition Process)

### **Magnetization of Ring Magnets**



| Туре         | Skewed Multipole                                                                  | Multipole                                 | Unipolar                                             |
|--------------|-----------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| Applications | Servo motors<br>Electric Steering<br>Low-cogging motors<br>Magnetic geared motors | Servo motors<br>Generators<br>Compressors | Linear actuators<br>Compressors<br>Magnetic bearings |

### **Servo Motor Applications**



- Ultra low cogging torque and accurate positioning
- Wide operating range with a high overload capacity for stability control
- Excellent temperature characteristics for safety and reliability
- Quick responsiveness with maximum 6000 rpm in approximately 5 milliseconds

### **Automotive Motor Applications**





Seat Motors



**Exhaust Valves** 

- Electric Power Steering
- EGR Valves
- Seat Motors
- Pumps

### Less Heavy Rare Earth Content



# **Overall Comparisons**

|                     | Pressing                                                                | Magnetic properties | Magnetic angle deviation | Corrosion<br>resistance |
|---------------------|-------------------------------------------------------------------------|---------------------|--------------------------|-------------------------|
| sintered ring       | Pressure<br>Electromagnet<br>Fressure<br>Fressure<br>magnetic repulsive | poor                | 0°                       | poor                    |
|                     | Rotation                                                                | good                | poor<br>(15~25°)         | poor                    |
| hot-pressed<br>ring |                                                                         | better              | 0°                       | good                    |

### **Magnetic Angle Deviation**

| Size            | Pressing Method   | 1      | 2      | 3      | 4      | average |
|-----------------|-------------------|--------|--------|--------|--------|---------|
| D39.35*D32.5*27 | Hot-pressed       | 0.52°  | 0.38°  |        |        | 0.45°   |
| D39*D30*25.5    | Rotation sintered | 14.55° | 13.92° | 12.55° | 14.66° | 13.92°  |
| D14*D10*20      | Rotation sintered | 22.44° | 24.68° | 22.89° | 22.96° | 23.24°  |
| D30*D24*20      | Rotation sintered | 18.39° | 18.41° | 15.87° | 14.36° | 16.75°  |

Rotation pressed ring have magnetic angle deviation  $10^{\circ}$  ~ $20^{\circ}$  Hot-pressed ring have magnetic angle smaller than  $1^{\circ}$ 

### Radial vs Rotational Alignment



# Defect of rotation pressing of sintered ring



N/S boundary deviation (~7 $^{\circ}$  )





# Cracking issues with sintered rings



#### Internal stress will lead to cracking of sintered rings

### **Better Mechanical Strength**



Supply of additional back pressure on the free surface helps to achieve a crack-free and mechanically stronger ring magnet

### **Thin-wall thickness**



Ability to produce hot-pressed ring magnets (d/D > 0.9) with a smaller wall thickness than other suppliers

### 4 Pole and 10 Pole Magnetization



For more information please contact our sales or service at 219-548-3799 or sales@allianceorg.com

# **Typical Packing**



Hot Pressed NdFeB rings have strong magnetic attraction in the radial field and must be packaged with certain minimum distances from each other in a non collapsible packing material



